Математика 10-11

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МБОУ СОШ № 9 им. Полевого П.Г.

УТВЕРЖДЕНО МУНИЦИПАЛЬНОЕ

БЮДЖЕТНОЕ
ОБЩЕОБРАЗОВАТЕЛЬ
Директор
НОЕ УЧРЕЖДЕНИЕ
СРЕДНЯЯ
Е.В. Ковш
ОБЩЕОБРАЗОВАТЕЛЬ
НАЯ ШКОЛА № 9
Протокол №1 от «29» ИМЕНИ ПОЛЕВОГО
августа 2024 г.
П.Г.

Подписан: МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ
ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ
ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 9 ИМЕНИ
ПОЛЕВОГО П.Г.
DN: C=RU, S=Краснодарский край, STREET="
Краснодарский край, Кущевский, Красная Поляна, Мира
ул, 38", L=Кущевский район, T=Директор,
O=МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ
ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ
ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 9 ИМЕНИ
ПОЛЕВОГО П.Г., OGRN=1022304245710,
SNILS=10993988318, INNLE=2340013096,
INN=234004089883, E=cbuo86168@yandex.ru, G=Елена
Васильевна, SN=Ковш, CN=МУНИЦИПАЛЬНОЕ
БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ
ШКОЛА № 9 ИМЕНИ ПОЛЕВОГО П.Г.
Основание: Я являюсь автором этого документа
Местоположение: место подписания
Дата: 2024-09-23 16:01:48
Foxit Reader Версия: 9.7.2

РАБОЧАЯ ПРОГРАММА
(ID 4564653), (ID 4565039), (ID 4564797)

учебного предмета «Математика. Углубленный уровень»
для обучающихся 10 – 11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Учебный курс «Алгебра и начала математического анализа» является
одним из наиболее значимых в программе среднего общего образования,
поскольку, с одной стороны, он обеспечивает инструментальную базу для
изучения всех естественно-научных курсов, а с другой стороны, формирует
логическое и абстрактное мышление обучающихся на уровне, необходимом
для освоения информатики, обществознания, истории, словесности и других
дисциплин. В рамках данного учебного курса обучающиеся овладевают
универсальным языком современной науки, которая формулирует свои
достижения в математической форме.
Учебный курс алгебры и начал математического анализа закладывает
основу для успешного овладения законами физики, химии, биологии,
понимания основных тенденций развития экономики и общественной жизни,
позволяет ориентироваться в современных цифровых и компьютерных
технологиях, уверенно использовать их для дальнейшего образования и в
повседневной жизни. В то же время овладение абстрактными и логически
строгими конструкциями алгебры и математического анализа развивает
умение находить закономерности, обосновывать истинность, доказывать
утверждения с помощью индукции и рассуждать дедуктивно, использовать
обобщение и конкретизацию, абстрагирование и аналогию, формирует
креативное и критическое мышление.
В ходе изучения учебного курса «Алгебра и начала математического
анализа» обучающиеся получают новый опыт решения прикладных задач,
самостоятельного построения математических моделей реальных ситуаций,
интерпретации
полученных
решений,
знакомятся
с
примерами
математических закономерностей в природе, науке и искусстве, с
выдающимися математическими открытиями и их авторами.
Учебный курс обладает значительным воспитательным потенциалом,
который реализуется как через учебный материал, способствующий
формированию научного мировоззрения, так и через специфику учебной
деятельности, требующей продолжительной концентрации внимания,
самостоятельности, аккуратности и ответственности за полученный
результат.
В основе методики обучения алгебре и началам математического
анализа лежит деятельностный принцип обучения.
В структуре учебного курса «Алгебра и начала математического
анализа» выделены следующие содержательно-методические линии: «Числа
и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала
математического анализа», «Множества и логика». Все основные

содержательно-методические линии изучаются на протяжении двух лет
обучения на уровне среднего общего образования, естественно дополняя
друг друга и постепенно насыщаясь новыми темами и разделами. Данный
учебный курс является интегративным, поскольку объединяет в себе
содержание нескольких математических дисциплин, таких как алгебра,
тригонометрия, математический анализ, теория множеств, математическая
логика и другие. По мере того как обучающиеся овладевают всё более
широким математическим аппаратом, у них последовательно формируется и
совершенствуется умение строить математическую модель реальной
ситуации, применять знания, полученные при изучении учебного курса, для
решения самостоятельно сформулированной математической задачи, а затем
интерпретировать свой ответ.
Содержательно-методическая линия «Числа и вычисления» завершает
формирование навыков использования действительных чисел, которое было
начато на уровне основного общего образования. На уровне среднего общего
образования особое внимание уделяется формированию навыков
рациональных вычислений, включающих в себя использование различных
форм записи числа, умение делать прикидку, выполнять приближённые
вычисления, оценивать числовые выражения, работать с математическими
константами. Знакомые обучающимся множества натуральных, целых,
рациональных и действительных чисел дополняются множеством
комплексных чисел. В каждом из этих множеств рассматриваются
свойственные ему специфические задачи и операции: деление нацело,
оперирование остатками на множестве целых чисел, особые свойства
рациональных и иррациональных чисел, арифметические операции, а также
извлечение корня натуральной степени на множестве комплексных чисел.
Благодаря последовательному расширению круга используемых чисел и
знакомству с возможностями их применения для решения различных задач
формируется представление о единстве математики как науки и её роли в
построении моделей реального мира, широко используются обобщение и
конкретизация.
Линия «Уравнения и неравенства» реализуется на протяжении всего
обучения на уровне среднего общего образования, поскольку в каждом
разделе Программы предусмотрено решение соответствующих задач. В
результате обучающиеся овладевают различными методами решения
рациональных, иррациональных, показательных, логарифмических и
тригонометрических уравнений, неравенств и систем, а также задач,
содержащих параметры. Полученные умения широко используются при
исследовании функций с помощью производной, при решении прикладных

задач и задач на нахождение наибольших и наименьших значений функции.
Данная содержательная линия включает в себя также формирование умений
выполнять расчёты по формулам, преобразования рациональных,
иррациональных и тригонометрических выражений, а также выражений,
содержащих степени и логарифмы. Благодаря изучению алгебраического
материала происходит дальнейшее развитие алгоритмического и
абстрактного мышления обучающихся, формируются навыки дедуктивных
рассуждений,
работы
с
символьными
формами,
представления
закономерностей и зависимостей в виде равенств и неравенств. Алгебра
предлагает эффективные инструменты для решения практических и
естественно-научных задач, наглядно демонстрирует свои возможности как
языка науки.
Содержательно-методическая линия «Функции и графики» тесно
переплетается с другими линиями учебного курса, поскольку в каком-то
смысле задаёт последовательность изучения материала. Изучение степенной,
показательной, логарифмической и тригонометрических функций, их свойств
и графиков, использование функций для решения задач из других учебных
предметов и реальной жизни тесно связано как с математическим анализом,
так и с решением уравнений и неравенств. При этом большое внимание
уделяется формированию умения выражать формулами зависимости между
различными величинами, исследовать полученные функции, строить их
графики. Материал этой содержательной линии нацелен на развитие умений
и навыков, позволяющих выражать зависимости между величинами в
различной форме: аналитической, графической и словесной. Его изучение
способствует развитию алгоритмического мышления, способности к
обобщению и конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет
существенно расширить круг как математических, так и прикладных задач,
доступных обучающимся, так как у них появляется возможность строить
графики сложных функций, определять их наибольшие и наименьшие
значения, вычислять площади фигур и объёмы тел, находить скорости и
ускорения процессов. Данная содержательная линия открывает новые
возможности построения математических моделей реальных ситуаций,
позволяет находить наилучшее решение в прикладных, в том числе
социально-экономических, задачах. Знакомство с основами математического
анализа способствует развитию абстрактного, формально-логического и
креативного мышления, формированию умений распознавать проявления
законов математики в науке, технике и искусстве. Обучающиеся узнают о

выдающихся результатах, полученных в ходе развития математики как
науки, и об их авторах.
Содержательно-методическая линия «Множества и логика» включает в
себя
элементы
теории
множеств
и
математической
логики.
Теоретико-множественные представления пронизывают весь курс школьной
математики и предлагают наиболее универсальный язык, объединяющий все
разделы математики и её приложений, они связывают разные
математические дисциплины и их приложения в единое целое. Поэтому
важно дать возможность обучающемуся понимать теоретико-множественный
язык современной математики и использовать его для выражения своих
мыслей. Другим важным признаком математики как науки следует признать
свойственную ей строгость обоснований и следование определённым
правилам
построения
доказательств.
Знакомство
с
элементами
математической логики способствует развитию логического мышления
обучающихся, позволяет им строить свои рассуждения на основе логических
правил, формирует навыки критического мышления.
В учебном курсе «Алгебра и начала математического анализа»
присутствуют основы математического моделирования, которые призваны
способствовать формированию навыков построения моделей реальных
ситуаций, исследования этих моделей с помощью аппарата алгебры и
математического анализа, интерпретации полученных результатов. Такие
задания вплетены в каждый из разделов программы, поскольку весь материал
учебного курса широко используется для решения прикладных задач. При
решении реальных практических задач обучающиеся развивают
наблюдательность, умение находить закономерности, абстрагироваться,
использовать аналогию, обобщать и конкретизировать проблему.
Деятельность по формированию навыков решения прикладных задач
организуется в процессе изучения всех тем учебного курса «Алгебра и начала
математического анализа».
На изучение учебного курса «Алгебра и начала математического
анализа» отводится 272 часа: в 10 классе – 136 часов (4 часа в неделю), в 11
классе – 136 часов (4 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 КЛАСС
Числа и вычисления
Рациональные числа. Обыкновенные и десятичные дроби, проценты,
бесконечные периодические дроби. Применение дробей и процентов для
решения прикладных задач из различных отраслей знаний и реальной жизни.
Действительные числа. Рациональные и иррациональные числа.
Арифметические операции с действительными числами. Модуль
действительного числа и его свойства. Приближённые вычисления, правила
округления, прикидка и оценка результата вычислений.
Степень с целым показателем. Бином Ньютона. Использование
подходящей формы записи действительных чисел для решения практических
задач и представления данных.
Арифметический корень натуральной степени и его свойства.
Степень с рациональным показателем и её свойства, степень с
действительным показателем.
Логарифм числа. Свойства логарифма. Десятичные и натуральные
логарифмы.
Синус, косинус, тангенс, котангенс числового аргумента. Арксинус,
арккосинус и арктангенс числового аргумента.
Уравнения и неравенства
Тождества и тождественные преобразования. Уравнение, корень
уравнения. Равносильные уравнения и уравнения-следствия. Неравенство,
решение неравенства.
Основные методы решения целых и дробно-рациональных уравнений и
неравенств. Многочлены от одной переменной. Деление многочлена на
многочлен с остатком. Теорема Безу. Многочлены с целыми
коэффициентами. Теорема Виета.
Преобразования числовых выражений, содержащих степени и корни.
Иррациональные
уравнения.
Основные
методы
решения
иррациональных уравнений.
Показательные уравнения. Основные методы решения показательных
уравнений.
Преобразование выражений, содержащих логарифмы.
Логарифмические
уравнения.
Основные
методы
решения
логарифмических уравнений.
Основные
тригонометрические
формулы.
Преобразование
тригонометрических выражений. Решение тригонометрических уравнений.

Решение систем линейных уравнений. Матрица системы линейных
уравнений. Определитель матрицы 2×2, его геометрический смысл и
свойства, вычисление его значения, применение определителя для решения
системы линейных уравнений. Решение прикладных задач с помощью
системы линейных уравнений. Исследование построенной модели с
помощью матриц и определителей.
Построение математических моделей реальной ситуации с помощью
уравнений и неравенств. Применение уравнений и неравенств к решению
математических задач и задач из различных областей науки и реальной
жизни.
Функции и графики
Функция, способы задания функции. Взаимно обратные функции.
Композиция функций. График функции. Элементарные преобразования
графиков функций.
Область определения и множество значений функции. Нули функции.
Промежутки знакопостоянства. Чётные и нечётные функции. Периодические
функции. Промежутки монотонности функции. Максимумы и минимумы
функции. Наибольшее и наименьшее значения функции на промежутке.
Линейная, квадратичная и дробно-линейная функции. Элементарное
исследование и построение их графиков.
Степенная функция с натуральным и целым показателем. Её свойства и
график. Свойства и график корня n-ой степени как функции обратной
степени с натуральным показателем.
Показательная и логарифмическая функции, их свойства и графики.
Использование графиков функций для решения уравнений.
Тригонометрическая окружность, определение тригонометрических
функций числового аргумента.
Функциональные зависимости в реальных процессах и явлениях.
Графики реальных зависимостей.
Начала математического анализа
Последовательности, способы задания последовательностей. Метод
математической
индукции.
Монотонные
и
ограниченные
последовательности. История возникновения математического анализа как
анализа бесконечно малых.
Арифметическая и геометрическая прогрессии. Бесконечно убывающая
геометрическая прогрессия. Сумма бесконечно убывающей геометрической
прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных
процентов. Использование прогрессии для решения реальных задач
прикладного характера.

Непрерывные функции и их свойства. Точки разрыва. Асимптоты
графиков функций. Свойства функций непрерывных на отрезке. Метод
интервалов для решения неравенств. Применение свойств непрерывных
функций для решения задач.
Первая и вторая производные функции. Определение, геометрический и
физический смысл производной. Уравнение касательной к графику функции.
Производные
элементарных
функций.
Производная
суммы,
произведения, частного и композиции функций.
Множества и логика
Множество, операции над множествами и их свойства. Диаграммы
Эйлера–Венна. Применение теоретико-множественного аппарата для
описания реальных процессов и явлений, при решении задач из других
учебных предметов.
Определение, теорема, свойство математического объекта, следствие,
доказательство, равносильные уравнения.
11 КЛАСС
Числа и вычисления
Натуральные и целые числа. Применение признаков делимости целых
чисел, наибольший общий делитель (далее – НОД) и наименьшее общее
кратное (далее – НОК), остатков по модулю, алгоритма Евклида для решения
задач в целых числах.
Комплексные числа. Алгебраическая и тригонометрическая формы
записи комплексного числа. Арифметические операции с комплексными
числами. Изображение комплексных чисел на координатной плоскости.
Формула Муавра. Корни n-ой степени из комплексного числа. Применение
комплексных чисел для решения физических и геометрических задач.
Уравнения и неравенства
Система и совокупность уравнений и неравенств. Равносильные
системы и системы-следствия. Равносильные неравенства.
Отбор
корней
тригонометрических
уравнений
с
помощью
тригонометрической окружности. Решение тригонометрических неравенств.
Основные методы решения показательных и логарифмических
неравенств.
Основные методы решения иррациональных неравенств.
Основные методы решения систем и совокупностей рациональных,
иррациональных, показательных и логарифмических уравнений.
Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению
математических задач и задач из различных областей науки и реальной
жизни, интерпретация полученных результатов.
Функции и графики
График композиции функций. Геометрические образы уравнений и
неравенств на координатной плоскости.
Тригонометрические функции, их свойства и графики.
Графические методы решения уравнений и неравенств. Графические
методы решения задач с параметрами.
Использование графиков функций для исследования процессов и
зависимостей, которые возникают при решении задач из других учебных
предметов и реальной жизни.
Начала математического анализа
Применение производной к исследованию функций на монотонность и
экстремумы. Нахождение наибольшего и наименьшего значений
непрерывной функции на отрезке.
Применение производной для нахождения наилучшего решения в
прикладных задачах, для определения скорости и ускорения процесса,
заданного формулой или графиком.
Первообразная, основное свойство первообразных. Первообразные
элементарных функций. Правила нахождения первообразных.
Интеграл.
Геометрический
смысл
интеграла.
Вычисление
определённого интеграла по формуле Ньютона-Лейбница.
Применение интеграла для нахождения площадей плоских фигур и
объёмов геометрических тел.
Примеры решений дифференциальных уравнений. Математическое
моделирование реальных процессов с помощью дифференциальных
уравнений.

ПЛАНИРУЕМЫЕ
«АЛГЕБРА
И
(УГЛУБЛЕННЫЙ
ОБРАЗОВАНИЯ

РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
НАЧАЛА
МАТЕМАТИЧЕСКОГО
АНАЛИЗА»
УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ОБЩЕГО

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданского воспитания:
сформированность гражданской позиции обучающегося как активного и
ответственного
члена
российского
общества,
представление
о
математических основах функционирования различных структур, явлений,
процедур гражданского общества (выборы, опросы и другое), умение
взаимодействовать с социальными институтами в соответствии с их
функциями и назначением;
2) патриотического воспитания:
сформированность российской гражданской идентичности, уважения к
прошлому и настоящему российской математики, ценностное отношение к
достижениям российских математиков и российской математической школы,
использование этих достижений в других науках, технологиях, сферах
экономики;
3) духовно-нравственного воспитания:
осознание духовных ценностей российского народа, сформированность
нравственного сознания, этического поведения, связанного с практическим
применением достижений науки и деятельностью учёного, осознание
личного вклада в построение устойчивого будущего;
4) эстетического воспитания:
эстетическое отношение к миру, включая эстетику математических
закономерностей, объектов, задач, решений, рассуждений, восприимчивость
к математическим аспектам различных видов искусства;
5) физического воспитания:
сформированность умения применять математические знания в
интересах здорового и безопасного образа жизни, ответственное отношение к
своему здоровью (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), физическое совершенствование
при занятиях спортивно-оздоровительной деятельностью;
6) трудового воспитания:
готовность к труду, осознание ценности трудолюбия, интерес к
различным сферам профессиональной деятельности, связанным с
математикой и её приложениями, умение совершать осознанный выбор
будущей профессии и реализовывать собственные жизненные планы,

готовность и способность к математическому образованию и
самообразованию на протяжении всей жизни, готовность к активному
участию в решении практических задач математической направленности;
7) экологического воспитания:
сформированность экологической культуры, понимание влияния
социально-экономических процессов на состояние природной и социальной
среды, осознание глобального характера экологических проблем, ориентация
на применение математических знаний для решения задач в области
окружающей среды, планирование поступков и оценки их возможных
последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному
уровню развития науки и общественной практики, понимание
математической науки как сферы человеческой деятельности, этапов её
развития и значимости для развития цивилизации, овладение языком
математики и математической культурой как средством познания мира,
готовность осуществлять проектную и исследовательскую деятельность
индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических
объектов, понятий, отношений между понятиями, формулировать
определения понятий, устанавливать существенный признак классификации,
основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать,
формулировать
и
преобразовывать
суждения:
утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия
в фактах, данных, наблюдениях и утверждениях, предлагать критерии для
выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и
индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений
(прямые и от противного), выстраивать аргументацию, приводить примеры и
контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько
вариантов решения, выбирать наиболее подходящий с учётом
самостоятельно выделенных критериев).

Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания,
формулировать
вопросы,
фиксирующие
противоречие,
проблему,
устанавливать искомое и данное, формировать гипотезу, аргументировать
свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование
по установлению особенностей математического объекта, явления, процесса,
выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность
полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать
предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на
вопрос и для решения задачи;
выбирать информацию из источников различных типов, анализировать,
систематизировать и интерпретировать информацию различных видов и
форм представления;
структурировать информацию, представлять её в различных формах,
иллюстрировать графически;
оценивать
надёжность
информации
по
самостоятельно
сформулированным критериям.
Коммуникативные универсальные учебные действия
Общение:
воспринимать и формулировать суждения в соответствии с условиями и
целями общения, ясно, точно, грамотно выражать свою точку зрения в
устных и письменных текстах, давать пояснения по ходу решения задачи,
комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы,
проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск
решения, сопоставлять свои суждения с суждениями других участников
диалога, обнаруживать различие и сходство позиций, в корректной форме
формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования,
проекта, самостоятельно выбирать формат выступления с учётом задач
презентации и особенностей аудитории.
Регулятивные универсальные учебные действия

Самоорганизация:
составлять план, алгоритм решения задачи, выбирать способ решения с
учётом имеющихся ресурсов и собственных возможностей, аргументировать
и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть навыками познавательной рефлексии как осознания
совершаемых действий и мыслительных процессов, их результатов, владеть
способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, данных,
найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины
достижения или недостижения результатов деятельности, находить ошибку,
давать оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной
работы при решении учебных задач, принимать цель совместной
деятельности, планировать организацию совместной работы, распределять
виды работ, договариваться, обсуждать процесс и результат работы,
обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений,
«мозговые штурмы» и иные), выполнять свою часть работы и
координировать свои действия с другими членами команды, оценивать
качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу обучения в 10 классе обучающийся получит следующие
предметные результаты по отдельным темам рабочей программы учебного
курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: рациональное число, бесконечная
периодическая дробь, проценты, иррациональное число, множества
рациональных и действительных чисел, модуль действительного числа;
применять дроби и проценты для решения прикладных задач из
различных отраслей знаний и реальной жизни;
применять приближённые вычисления, правила округления, прикидку и
оценку результата вычислений;

свободно оперировать понятием: степень с целым показателем,
использовать подходящую форму записи действительных чисел для решения
практических задач и представления данных;
свободно оперировать понятием: арифметический корень натуральной
степени;
свободно оперировать понятием: степень с рациональным показателем;
свободно оперировать понятиями: логарифм числа, десятичные и
натуральные логарифмы;
свободно оперировать понятиями: синус, косинус, тангенс, котангенс
числового аргумента;
оперировать понятиями: арксинус, арккосинус и арктангенс числового
аргумента.
Уравнения и неравенства:
свободно оперировать понятиями: тождество, уравнение, неравенство,
равносильные уравнения и уравнения-следствия, равносильные неравенства;
применять
различные
методы
решения
рациональных
и
дробно-рациональных уравнений, применять метод интервалов для решения
неравенств;
свободно оперировать понятиями: многочлен от одной переменной,
многочлен с целыми коэффициентами, корни многочлена, применять
деление многочлена на многочлен с остатком, теорему Безу и теорему Виета
для решения задач;
свободно оперировать понятиями: система линейных уравнений,
матрица, определитель матрицы 2 × 2 и его геометрический смысл,
использовать свойства определителя 2 × 2 для вычисления его значения,
применять определители для решения системы линейных уравнений,
моделировать реальные ситуации с помощью системы линейных уравнений,
исследовать построенные модели с помощью матриц и определителей,
интерпретировать полученный результат;
использовать свойства действий с корнями для преобразования
выражений;
выполнять преобразования числовых выражений, содержащих степени с
рациональным показателем;
использовать
свойства
логарифмов
для
преобразования
логарифмических выражений;
свободно оперировать понятиями: иррациональные, показательные и
логарифмические уравнения, находить их решения с помощью равносильных
переходов или осуществляя проверку корней;

применять основные тригонометрические формулы для преобразования
тригонометрических выражений;
свободно оперировать понятием: тригонометрическое уравнение,
применять необходимые формулы для решения основных типов
тригонометрических уравнений;
моделировать реальные ситуации на языке алгебры, составлять
выражения, уравнения, неравенства по условию задачи, исследовать
построенные модели с использованием аппарата алгебры.
Функции и графики:
свободно оперировать понятиями: функция, способы задания функции,
взаимно обратные функции, композиция функций, график функции,
выполнять элементарные преобразования графиков функций;
свободно оперировать понятиями: область определения и множество
значений функции, нули функции, промежутки знакопостоянства;
свободно оперировать понятиями: чётные и нечётные функции,
периодические функции, промежутки монотонности функции, максимумы и
минимумы функции, наибольшее и наименьшее значение функции на
промежутке;
свободно оперировать понятиями: степенная функция с натуральным и
целым показателем, график степенной функции с натуральным и целым
показателем, график корня n-ой степени как функции обратной степени с
натуральным показателем;
оперировать понятиями: линейная, квадратичная и дробно-линейная
функции, выполнять элементарное исследование и построение их графиков;
свободно оперировать понятиями: показательная и логарифмическая
функции, их свойства и графики, использовать их графики для решения
уравнений;
свободно оперировать понятиями: тригонометрическая окружность,
определение тригонометрических функций числового аргумента;
использовать графики функций для исследования процессов и
зависимостей при решении задач из других учебных предметов и реальной
жизни, выражать формулами зависимости между величинами;
Начала математического анализа:
свободно оперировать понятиями: арифметическая и геометрическая
прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и
экспоненциальный рост, формула сложных процентов, иметь представление
о константе;
использовать прогрессии для решения реальных задач прикладного
характера;

свободно оперировать понятиями: последовательность, способы задания
последовательностей, монотонные и ограниченные последовательности,
понимать основы зарождения математического анализа как анализа
бесконечно малых;
свободно оперировать понятиями: непрерывные функции, точки
разрыва графика функции, асимптоты графика функции;
свободно оперировать понятием: функция, непрерывная на отрезке,
применять свойства непрерывных функций для решения задач;
свободно оперировать понятиями: первая и вторая производные
функции, касательная к графику функции;
вычислять производные суммы, произведения, частного и композиции
двух функций, знать производные элементарных функций;
использовать геометрический и физический смысл производной для
решения задач.
Множества и логика:
свободно оперировать понятиями: множество, операции над
множествами;
использовать теоретико-множественный аппарат для описания реальных
процессов и явлений, при решении задач из других учебных предметов;
свободно
оперировать
понятиями:
определение,
теорема,
уравнение-следствие, свойство математического объекта, доказательство,
равносильные уравнения и неравенства.
К концу обучения в 11 классе обучающийся получит следующие
предметные результаты по отдельным темам рабочей программы учебного
курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: натуральное и целое число,
множества натуральных и целых чисел, использовать признаки делимости
целых чисел, НОД и НОК натуральных чисел для решения задач, применять
алгоритм Евклида;
свободно оперировать понятием остатка по модулю, записывать
натуральные числа в различных позиционных системах счисления;
свободно оперировать понятиями: комплексное число и множество
комплексных чисел, представлять комплексные числа в алгебраической и
тригонометрической форме, выполнять арифметические операции с ними и
изображать на координатной плоскости.
Уравнения и неравенства:

свободно оперировать понятиями: иррациональные, показательные и
логарифмические неравенства, находить их решения с помощью
равносильных переходов;
осуществлять отбор корней при решении тригонометрического
уравнения;
свободно оперировать понятием тригонометрическое неравенство,
применять необходимые формулы для решения основных типов
тригонометрических неравенств;
свободно оперировать понятиями: система и совокупность уравнений и
неравенств, равносильные системы и системы-следствия, находить решения
системы и совокупностей рациональных, иррациональных, показательных и
логарифмических уравнений и неравенств;
решать
рациональные,
иррациональные,
показательные,
логарифмические и тригонометрические уравнения и неравенства,
содержащие модули и параметры;
применять графические методы для решения уравнений и неравенств, а
также задач с параметрами;
моделировать реальные ситуации на языке алгебры, составлять
выражения, уравнения, неравенства и их системы по условию задачи,
исследовать построенные модели с использованием аппарата алгебры,
интерпретировать полученный результат.
Функции и графики:
строить графики композиции функций с помощью элементарного
исследования и свойств композиции двух функций;
строить геометрические образы уравнений и неравенств на
координатной плоскости;
свободно оперировать понятиями: графики тригонометрических
функций;
применять функции для моделирования и исследования реальных
процессов.
Начала математического анализа:
использовать производную для исследования функции на монотонность
и экстремумы;
находить наибольшее и наименьшее значения функции непрерывной на
отрезке;
использовать производную для нахождения наилучшего решения в
прикладных, в том числе социально-экономических, задачах, для
определения скорости и ускорения процесса, заданного формулой или
графиком;

свободно оперировать понятиями: первообразная, определённый
интеграл, находить первообразные элементарных функций и вычислять
интеграл по формуле Ньютона-Лейбница;
находить площади плоских фигур и объёмы тел с помощью интеграла;
иметь представление о математическом моделировании на примере
составления дифференциальных уравнений;
решать прикладные задачи, в том числе социально-экономического и
физического характера, средствами математического анализа.
Геометрия является одним из базовых курсов на уровне среднего
общего образования, так как обеспечивает возможность изучения дисциплин
естественно-научной направленности и предметов гуманитарного цикла.
Поскольку
логическое
мышление,
формируемое
при
изучении
обучающимися понятийных основ геометрии, при доказательстве теорем и
построении цепочки логических утверждений при решении геометрических
задач, умение выдвигать и опровергать гипотезы непосредственно
используются при решении задач естественно-научного цикла, в частности
физических задач.
Цель освоения программы учебного курса «Геометрия» на углублённом
уровне – развитие индивидуальных способностей обучающихся при
изучении геометрии, как составляющей предметной области «Математика и
информатика» через обеспечение возможности приобретения и
использования более глубоких геометрических знаний и действий,
специфичных геометрии, и необходимых для успешного профессионального
образования, связанного с использованием математики.
Приоритетными задачами курса геометрии на углублённом уровне,
расширяющими и усиливающими курс базового уровня, являются:
расширение представления о геометрии как части мировой культуры и
формирование осознания взаимосвязи геометрии с окружающим миром;
формирование представления о пространственных фигурах как о
важнейших математических моделях, позволяющих описывать и изучать
разные явления окружающего мира, знание понятийного аппарата по разделу
«Стереометрия» учебного курса геометрии;
формирование
умения
владеть
основными
понятиями
о
пространственных фигурах и их основными свойствами, знание теорем,
формул и умение их применять, умения доказывать теоремы и находить
нестандартные способы решения задач;

формирование умения распознавать на чертежах, моделях и в реальном
мире многогранники и тела вращения, конструировать геометрические
модели;
формирование понимания возможности аксиоматического построения
математических теорий, формирование понимания роли аксиоматики при
проведении рассуждений;
формирование умения владеть методами доказательств и алгоритмов
решения, умения их применять, проводить доказательные рассуждения в
ходе решения стереометрических задач и задач с практическим содержанием,
формирование представления о необходимости доказательств при
обосновании математических утверждений и роли аксиоматики в проведении
дедуктивных рассуждений;
развитие и совершенствование интеллектуальных и творческих
способностей обучающихся, познавательной активности, исследовательских
умений, критичности мышления, интереса к изучению геометрии;
формирование функциональной грамотности, релевантной геометрии:
умения распознавать проявления геометрических понятий, объектов и
закономерностей в реальных жизненных ситуациях и при изучении других
учебных предметов, проявления зависимостей и закономерностей,
моделирования реальных ситуаций, исследования построенных моделей,
интерпретации полученных результатов.
Основными содержательными линиями учебного курса «Геометрия» в
10–11 классах являются: «Прямые и плоскости в пространстве»,
«Многогранники», «Тела вращения», «Векторы и координаты в
пространстве», «Движения в пространстве».
Сформулированное во ФГОС СОО требование «уметь оперировать
понятиями», релевантными геометрии на углублённом уровне обучения в
10–11 классах, относится ко всем содержательным линиям учебного курса, а
формирование логических умений распределяется не только по
содержательным линиям, но и по годам обучения. Содержание образования,
соответствующее предметным результатам освоения Федеральной рабочей
программы, распределённым по годам обучения, структурировано таким
образом, чтобы ко всем основным, принципиальным вопросам обучающиеся
обращались неоднократно. Это позволяет организовать овладение
геометрическими понятиями и навыками последовательно и поступательно, с
соблюдением принципа преемственности, а новые знания включать в общую
систему геометрических представлений обучающихся, расширяя и углубляя
её, образуя прочные множественные связи.
Переход к изучению геометрии на углублённом уровне позволяет:

создать условия для дифференциации обучения, построения
индивидуальных образовательных программ, обеспечить углублённое
изучение геометрии как составляющей учебного предмета «Математика»;
подготовить обучающихся к продолжению изучения математики с
учётом выбора будущей профессии, обеспечивая преемственность между
общим и профессиональным образованием.
На изучение учебного курса «Геометрия» на углублённом уровне
отводится 204 часа: в 10 классе – 102 часа (3 часа в неделю), в 11 классе – 102
часа (3 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 КЛАСС
Прямые и плоскости в пространстве
Основные понятия стереометрии. Точка, прямая, плоскость,
пространство. Понятие об аксиоматическом построении стереометрии:
аксиомы стереометрии и следствия из них.
Взаимное расположение прямых в пространстве: пересекающиеся,
параллельные и скрещивающиеся прямые. Признаки скрещивающихся
прямых. Параллельность прямых и плоскостей в пространстве: параллельные
прямые в пространстве, параллельность трёх прямых, параллельность прямой
и плоскости. Параллельное и центральное проектирование, изображение
фигур. Основные свойства параллельного проектирования. Изображение
фигур в параллельной проекции. Углы с сонаправленными сторонами, угол
между прямыми в пространстве. Параллельность плоскостей: параллельные
плоскости,
свойства
параллельных
плоскостей.
Простейшие
пространственные фигуры на плоскости: тетраэдр, параллелепипед,
построение сечений.
Перпендикулярность прямой и плоскости: перпендикулярные прямые в
пространстве, прямые параллельные и перпендикулярные к плоскости,
признак перпендикулярности прямой и плоскости, теорема о прямой
перпендикулярной
плоскости.
Ортогональное
проектирование.
Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние
от
прямой
до
плоскости,
проекция
фигуры
на
плоскость.
Перпендикулярность плоскостей: признак перпендикулярности двух
плоскостей. Теорема о трёх перпендикулярах.
Углы в пространстве: угол между прямой и плоскостью, двугранный
угол, линейный угол двугранного угла. Трёхгранный и многогранные углы.
Свойства плоских углов многогранного угла. Свойства плоских и
двугранных углов трёхгранного угла. Теоремы косинусов и синусов для
трёхгранного угла.
Многогранники
Виды многогранников, развёртка многогранника. Призма: n-угольная
призма, прямая и наклонная призмы, боковая и полная поверхность призмы.
Параллелепипед, прямоугольный параллелепипед и его свойства.
Кратчайшие пути на поверхности многогранника. Теорема Эйлера.
Пространственная теорема Пифагора. Пирамида: n-угольная пирамида,
правильная и усечённая пирамиды. Свойства рёбер и боковых граней
правильной пирамиды. Правильные многогранники: правильная призма и

правильная пирамида, правильная треугольная пирамида и правильный
тетраэдр, куб. Представление о правильных многогранниках: октаэдр,
додекаэдр и икосаэдр.
Вычисление элементов многогранников: рёбра, диагонали, углы.
Площадь боковой поверхности и полной поверхности прямой призмы,
площадь оснований, теорема о боковой поверхности прямой призмы.
Площадь боковой поверхности и поверхности правильной пирамиды,
теорема о площади усечённой пирамиды.
Симметрия в пространстве. Элементы симметрии правильных
многогранников. Симметрия в правильном многограннике: симметрия
параллелепипеда, симметрия правильных призм, симметрия правильной
пирамиды.
Векторы и координаты в пространстве
Понятия: вектор в пространстве, нулевой вектор, длина ненулевого
вектора, векторы коллинеарные, сонаправленные и противоположно
направленные векторы. Равенство векторов. Действия с векторами: сложение
и вычитание векторов, сумма нескольких векторов, умножение вектора на
число. Свойства сложения векторов. Свойства умножения вектора на число.
Понятие компланарные векторы. Признак компланарности трёх векторов.
Правило параллелепипеда. Теорема о разложении вектора по трём
некомпланарным векторам. Прямоугольная система координат в
пространстве. Координаты вектора. Связь между координатами вектора и
координатами точек. Угол между векторами. Скалярное произведение
векторов.
11 КЛАСС
Тела вращения
Понятия: цилиндрическая поверхность, коническая поверхность,
сферическая поверхность, образующие поверхностей. Тела вращения:
цилиндр, конус, усечённый конус, сфера, шар. Взаимное расположение
сферы и плоскости, касательная плоскость к сфере. Изображение тел
вращения на плоскости. Развёртка цилиндра и конуса. Симметрия сферы и
шара.
Объём. Основные свойства объёмов тел. Теорема об объёме
прямоугольного параллелепипеда и следствия из неё. Объём прямой и
наклонной призмы, цилиндра, пирамиды и конуса. Объём шара и шарового
сегмента.
Комбинации тел вращения и многогранников. Призма, вписанная в
цилиндр, описанная около цилиндра. Пересечение сферы и шара с
плоскостью. Касание шара и сферы плоскостью. Понятие многогранника,

описанного около сферы, сферы, вписанной в многогранник или тело
вращения.
Площадь поверхности цилиндра, конуса, площадь сферы и её частей.
Подобие в пространстве. Отношение объёмов, площадей поверхностей
подобных фигур. Преобразование подобия, гомотетия. Решение задач на
плоскости с использованием стереометрических методов.
Построение сечений многогранников и тел вращения: сечения цилиндра
(параллельно и перпендикулярно оси), сечения конуса (параллельные
основанию и проходящие через вершину), сечения шара, методы построения
сечений: метод следов, метод внутреннего проектирования, метод переноса
секущей плоскости.
Векторы и координаты в пространстве
Векторы в пространстве. Операции над векторами. Векторное
умножение векторов. Свойства векторного умножения. Прямоугольная
система координат в пространстве. Координаты вектора. Разложение вектора
по базису. Координатно-векторный метод при решении геометрических
задач.
Движения в пространстве
Движения пространства. Отображения. Движения и равенство фигур.
Общие свойства движений. Виды движений: параллельный перенос,
центральная симметрия, зеркальная симметрия, поворот вокруг прямой.
Преобразования подобия. Прямая и сфера Эйлера.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
«ГЕОМЕТРИЯ» (УГЛУБЛЕННЫЙ УРОВЕНЬ) НА УРОВНЕ
СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданское воспитание:
сформированность гражданской позиции обучающегося как активного и
ответственного
члена
российского
общества,
представление
о
математических основах функционирования различных структур, явлений,
процедур гражданского общества (выборы, опросы и другое), умение
взаимодействовать с социальными институтами в соответствии с их
функциями и назначением;
2) патриотическое воспитание:
сформированность российской гражданской идентичности, уважения к
прошлому и настоящему российской математики, ценностное отношение к
достижениям российских математиков и российской математической школы,
использование этих достижений в других науках, технологиях, сферах
экономики;
3) духовно-нравственное воспитание:
осознание духовных ценностей российского народа, сформированность
нравственного сознания, этического поведения, связанного с практическим
применением достижений науки и деятельностью учёного, осознание
личного вклада в построение устойчивого будущего;
4) эстетическое воспитание:
эстетическое отношение к миру, включая эстетику математических
закономерностей, объектов, задач, решений, рассуждений, восприимчивость
к математическим аспектам различных видов искусства;
5) физическое воспитание:
сформированность умения применять математические знания в
интересах здорового и безопасного образа жизни, ответственное отношение к
своему здоровью (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), физическое совершенствование
при занятиях спортивно-оздоровительной деятельностью;
6) трудовое воспитание:
готовность к труду, осознание ценности трудолюбия, интерес к
различным сферам профессиональной деятельности, связанным с
математикой и её приложениями, умение совершать осознанный выбор
будущей профессии и реализовывать собственные жизненные планы,
готовность и способность к математическому образованию и

самообразованию на протяжении всей жизни, готовность к активному
участию в решении практических задач математической направленности;
7) экологическое воспитание:
сформированность экологической культуры, понимание влияния
социально-экономических процессов на состояние природной и социальной
среды, осознание глобального характера экологических проблем, ориентация
на применение математических знаний для решения задач в области
окружающей среды, планирование поступков и оценки их возможных
последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному
уровню развития науки и общественной практики, понимание
математической науки как сферы человеческой деятельности, этапов её
развития и значимости для развития цивилизации, овладение языком
математики и математической культурой как средством познания мира,
готовность осуществлять проектную и исследовательскую деятельность
индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических
объектов, понятий, отношений между понятиями, формулировать
определения понятий, устанавливать существенный признак классификации,
основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать,
формулировать
и
преобразовывать
суждения:
утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия
в фактах, данных, наблюдениях и утверждениях, предлагать критерии для
выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и
индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений
(прямые и от противного), выстраивать аргументацию, приводить примеры и
контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько
вариантов решения, выбирать наиболее подходящий с учётом
самостоятельно выделенных критериев).
Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания,
формулировать
вопросы,
фиксирующие
противоречие,
проблему,
устанавливать искомое и данное, формировать гипотезу, аргументировать
свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование
по установлению особенностей математического объекта, явления, процесса,
выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность
полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать
предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на
вопрос и для решения задачи;
выбирать информацию из источников различных типов, анализировать,
систематизировать и интерпретировать информацию различных видов и
форм представления;
структурировать информацию, представлять её в различных формах,
иллюстрировать графически;
оценивать
надёжность
информации
по
самостоятельно
сформулированным критериям.
Коммуникативные универсальные учебные действия
Общение:
воспринимать и формулировать суждения в соответствии с условиями и
целями общения, ясно, точно, грамотно выражать свою точку зрения в
устных и письменных текстах, давать пояснения по ходу решения задачи,
комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы,
проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск
решения, сопоставлять свои суждения с суждениями других участников
диалога, обнаруживать различие и сходство позиций, в корректной форме
формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования,
проекта, самостоятельно выбирать формат выступления с учётом задач
презентации и особенностей аудитории.
Регулятивные универсальные учебные действия
Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с
учётом имеющихся ресурсов и собственных возможностей, аргументировать
и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть навыками познавательной рефлексии как осознания
совершаемых действий и мыслительных процессов, их результатов, владеть
способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, данных,
найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины
достижения или недостижения результатов деятельности, находить ошибку,
давать оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной
работы при решении учебных задач, принимать цель совместной
деятельности, планировать организацию совместной работы, распределять
виды работ, договариваться, обсуждать процесс и результат работы,
обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений,
«мозговые штурмы» и иные), выполнять свою часть работы и
координировать свои действия с другими членами команды, оценивать
качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу 10 класса обучающийся научится:
 свободно оперировать основными понятиями стереометрии при
решении задач и проведении математических рассуждений;
 применять аксиомы стереометрии и следствия из них при решении
геометрических задач;
 классифицировать взаимное расположение прямых в пространстве,
плоскостей в пространстве, прямых и плоскостей в пространстве;
 свободно
оперировать понятиями, связанными с углами в
пространстве: между прямыми в пространстве, между прямой и
плоскостью;
 свободно оперировать понятиями, связанными с многогранниками;

 свободно

распознавать основные виды многогранников (призма,
пирамида, прямоугольный параллелепипед, куб);
 классифицировать
многогранники,
выбирая
основания
для
классификации;
 свободно
оперировать понятиями, связанными с сечением
многогранников плоскостью;
 выполнять
параллельное,
центральное
и
ортогональное
проектирование фигур на плоскость, выполнять изображения фигур
на плоскости;
 строить сечения многогранников различными методами, выполнять
(выносные) плоские чертежи из рисунков простых объёмных фигур:
вид сверху, сбоку, снизу;
 вычислять площади поверхностей многогранников (призма, пирамида),
геометрических тел с применением формул;
 свободно оперировать понятиями: симметрия в пространстве, центр,
ось и плоскость симметрии, центр, ось и плоскость симметрии
фигуры;
 свободно оперировать понятиями, соответствующими векторам и
координатам в пространстве;
 выполнять действия над векторами;
 решать задачи на доказательство математических отношений и
нахождение геометрических величин, применяя известные методы
при решении математических задач повышенного и высокого уровня
сложности;
 применять
простейшие
программные
средства
и
электронно-коммуникационные
системы
при
решении
стереометрических задач;
 извлекать, преобразовывать и интерпретировать информацию о
пространственных геометрических фигурах, представленную на
чертежах и рисунках;
 применять
полученные знания на практике: сравнивать и
анализировать реальные ситуации, применять изученные понятия в
процессе поиска решения математически сформулированной
проблемы, моделировать реальные ситуации на языке геометрии,
исследовать построенные модели с использованием геометрических
понятий и теорем, аппарата алгебры, решать практические задачи,
связанные с нахождением геометрических величин;
 иметь представления об основных этапах развития геометрии как
составной части фундамента развития технологий.

К концу 11 класса обучающийся научится:
 свободно оперировать понятиями, связанными с цилиндрической,
конической и сферической поверхностями, объяснять способы
получения;
 оперировать понятиями, связанными с телами вращения: цилиндром,
конусом, сферой и шаром;
 распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять
способы получения тел вращения;
 классифицировать взаимное расположение сферы и плоскости;
 вычислять величины элементов многогранников и тел вращения,
объёмы и площади поверхностей многогранников и тел вращения,
геометрических тел с применением формул;
 свободно оперировать понятиями, связанными с комбинациями тел
вращения и многогранников: многогранник, вписанный в сферу и
описанный около сферы, сфера, вписанная в многогранник или тело
вращения;
 вычислять соотношения между площадями поверхностей и объёмами
подобных тел;
 изображать изучаемые фигуры, выполнять (выносные) плоские
чертежи из рисунков простых объёмных фигур: вид сверху, сбоку,
снизу, строить сечения тел вращения;
 извлекать, интерпретировать и преобразовывать информацию о
пространственных геометрических фигурах, представленную на
чертежах и рисунках;
 свободно оперировать понятием вектор в пространстве;
 выполнять операции над векторами;
 задавать плоскость уравнением в декартовой системе координат;
 решать геометрические задачи на вычисление углов между прямыми и
плоскостями, вычисление расстояний от точки до плоскости, в целом,
на применение векторно-координатного метода при решении;
 свободно оперировать понятиями, связанными с движением в
пространстве, знать свойства движений;
 выполнять изображения многогранников и тел вращения при
параллельном переносе, центральной симметрии, зеркальной
симметрии, при повороте вокруг прямой, преобразования подобия;
 строить сечения многогранников и тел вращения: сечения цилиндра
(параллельно и перпендикулярно оси), сечения конуса (параллельные
основанию и проходящие через вершину), сечения шара;

 использовать

методы построения сечений: метод следов, метод
внутреннего проектирования, метод переноса секущей плоскости;
 доказывать геометрические утверждения;
 применять геометрические факты для решения стереометрических
задач, предполагающих несколько шагов решения, если условия
применения заданы в явной и неявной форме;
 решать задачи на доказательство математических отношений и
нахождение геометрических величин;
 применять программные средства и электронно-коммуникационные
системы при решении стереометрических задач;
 применять полученные знания на практике: сравнивать, анализировать
и оценивать реальные ситуации, применять изученные понятия,
теоремы, свойства в процессе поиска решения математически
сформулированной проблемы, моделировать реальные ситуации на
языке геометрии, исследовать построенные модели с использованием
геометрических понятий и теорем, аппарата алгебры, решать
практические задачи, связанные с нахождением геометрических
величин;
 иметь представления об основных этапах развития геометрии как
составной части фундамента развития технологий.
Учебный курс «Вероятность и статистика» углублённого уровня
является продолжением и развитием одноименного учебного курса
углублённого уровня на уровне среднего общего образования. Учебный курс
предназначен для формирования у обучающихся статистической культуры и
понимания роли теории вероятностей как математического инструмента для
изучения случайных событий, величин и процессов. При изучении курса
обогащаются представления обучающихся о методах исследования
изменчивого мира, развивается понимание значимости и общности
математических методов познания как неотъемлемой части современного
естественно-научного мировоззрения.
Содержание учебного курса направлено на закрепление знаний,
полученных при изучении курса на уровне основного общего образования, и
на развитие представлений о случайных величинах и взаимосвязях между
ними на важных примерах, сюжеты которых почерпнуты из окружающего
мира. В результате у обучающихся должно сформироваться представление о
наиболее употребительных и общих математических моделях, используемых
для описания антропометрических и демографических величин,
погрешностей в различные рода измерениях, длительности безотказной

работы технических устройств, характеристик массовых явлений и процессов
в
обществе.
Учебный
курс
является
базой
для
освоения
вероятностно-статистических методов, необходимых специалистам не только
инженерных специальностей, но также социальных и психологических,
поскольку современные общественные науки в значительной мере
используют аппарат анализа больших данных. Центральную часть учебного
курса занимает обсуждение закона больших чисел – фундаментального
закона природы, имеющего математическую формализацию.
В соответствии с указанными целями в структуре учебного курса
«Вероятность и статистика» на углублённом уровне выделены основные
содержательные линии: «Случайные события и вероятности» и «Случайные
величины и закон больших чисел».
Помимо основных линий в учебный курс включены элементы теории
графов и теории множеств, необходимые для полноценного освоения
материала данного учебного курса и смежных математических учебных
курсов.
Содержание линии «Случайные события и вероятности» служит
основой для формирования представлений о распределении вероятностей
между значениями случайных величин. Важную часть в этой содержательной
линии занимает изучение геометрического и биномиального распределений и
знакомство с их непрерывными аналогами – показательным и нормальным
распределениями.
Темы, связанные с непрерывными случайными величинами и
распределениями, акцентируют внимание обучающихся на описании и
изучении случайных явлений с помощью непрерывных функций. Основное
внимание уделяется показательному и нормальному распределениям.
В учебном курсе предусматривается ознакомительное изучение связи
между случайными величинами и описание этой связи с помощью
коэффициента корреляции и его выборочного аналога. Эти элементы
содержания развивают тему «Диаграммы рассеивания», изученную на уровне
основного общего образования, и во многом опираются на сведения из
курсов алгебры и геометрии.
Ещё один элемент содержания, который предлагается на
ознакомительном уровне – последовательность случайных независимых
событий, наступающих в единицу времени. Ознакомление с распределением
вероятностей количества таких событий носит развивающий характер и
является актуальным для будущих абитуриентов, поступающих на учебные
специальности, связанные с общественными науками, психологией и
управлением.

На изучение учебного курса «Вероятность и статистика» на
углубленном уровне отводится 68 часов: в 10 классе – 34 часа (1 час в
неделю), в 11 классе – 34 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 КЛАСС
Граф, связный граф, пути в графе: циклы и цепи. Степень (валентность)
вершины. Графы на плоскости. Деревья.
Случайные эксперименты (опыты) и случайные события. Элементарные
события (исходы). Вероятность случайного события. Близость частоты и
вероятности
событий.
Случайные
опыты
с
равновозможными
элементарными событиями.
Операции над событиями: пересечение, объединение, противоположные
события. Диаграммы Эйлера. Формула сложения вероятностей.
Условная вероятность. Умножение вероятностей. Дерево случайного
эксперимента. Формула полной вероятности. Формула Байеса. Независимые
события.
Бинарный случайный опыт (испытание), успех и неудача. Независимые
испытания. Серия независимых испытаний до первого успеха. Перестановки
и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома
Ньютона.
Серия независимых испытаний Бернулли. Случайный выбор из
конечной совокупности.
Случайная величина. Распределение вероятностей. Диаграмма
распределения. Операции над случайными величинами. Бинарная случайная
величина. Примеры распределений, в том числе геометрическое и
биномиальное.
11 КЛАСС
Совместное распределение двух случайных величин. Независимые
случайные величины.
Математическое ожидание случайной величины (распределения).
Примеры применения математического ожидания (страхование, лотерея).
Математическое ожидание бинарной случайной величины. Математическое
ожидание суммы случайных величин. Математическое ожидание
геометрического и биномиального распределений.
Дисперсия и стандартное отклонение случайной величины
(распределения). Дисперсия бинарной случайной величины. Математическое
ожидание произведения и дисперсия суммы независимых случайных
величин.
Дисперсия
и
стандартное
отклонение
биномиального
распределения. Дисперсия и стандартное отклонение геометрического
распределения.

Неравенство Чебышёва. Теорема Чебышёва. Теорема Бернулли. Закон
больших чисел. Выборочный метод исследований. Выборочные
характеристики. Оценивание вероятности события по выборочным данным.
Проверка простейших гипотез с помощью изученных распределений.
Непрерывные случайные величины. Примеры. Функция плотности
вероятности распределения. Равномерное распределение и его свойства.
Задачи, приводящие к показательному распределению. Задачи, приводящие к
нормальному
распределению.
Функция
плотности
вероятности
показательного распределения, функция плотности вероятности нормального
распределения. Функция плотности и свойства нормального распределения.
Последовательность одиночных независимых событий. Задачи,
приводящие к распределению Пуассона.
Ковариация двух случайных величин. Коэффициент линейной
корреляции. Совместные наблюдения двух величин. Выборочный
коэффициент корреляции. Различие между линейной связью и
причинно-следственной связью. Линейная регрессия, метод наименьших
квадратов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
«ВЕРОЯТНОСТЬ И СТАТИСТИКА» (УГЛУБЛЕННЫЙ УРОВЕНЬ)
НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданского воспитания:
сформированность гражданской позиции обучающегося как активного и
ответственного
члена
российского
общества,
представление
о
математических основах функционирования различных структур, явлений,
процедур гражданского общества (выборы, опросы и другое), умение
взаимодействовать с социальными институтами в соответствии с их
функциями и назначением;
2) патриотического воспитания:
сформированность российской гражданской идентичности, уважения к
прошлому и настоящему российской математики, ценностное отношение к
достижениям российских математиков и российской математической школы,
использование этих достижений в других науках, технологиях, сферах
экономики;
3) духовно-нравственного воспитания:
осознание духовных ценностей российского народа, сформированность
нравственного сознания, этического поведения, связанного с практическим
применением достижений науки и деятельностью учёного, осознание
личного вклада в построение устойчивого будущего;
4) эстетического воспитания:
эстетическое отношение к миру, включая эстетику математических
закономерностей, объектов, задач, решений, рассуждений, восприимчивость
к математическим аспектам различных видов искусства;
5) физического воспитания:
сформированность умения применять математические знания в
интересах здорового и безопасного образа жизни, ответственное отношение к
своему здоровью (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), физическое совершенствование
при занятиях спортивно-оздоровительной деятельностью;
6) трудового воспитания:
готовность к труду, осознание ценности трудолюбия, интерес к
различным сферам профессиональной деятельности, связанным с
математикой и её приложениями, умение совершать осознанный выбор
будущей профессии и реализовывать собственные жизненные планы,
готовность и способность к математическому образованию и

самообразованию на протяжении всей жизни, готовность к активному
участию в решении практических задач математической направленности;
7) экологического воспитания:
сформированность экологической культуры, понимание влияния
социально-экономических процессов на состояние природной и социальной
среды, осознание глобального характера экологических проблем, ориентация
на применение математических знаний для решения задач в области
окружающей среды, планирование поступков и оценки их возможных
последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному
уровню развития науки и общественной практики, понимание
математической науки как сферы человеческой деятельности, этапов её
развития и значимости для развития цивилизации, овладение языком
математики и математической культурой как средством познания мира,
готовность осуществлять проектную и исследовательскую деятельность
индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических
объектов, понятий, отношений между понятиями, формулировать
определения понятий, устанавливать существенный признак классификации,
основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать,
формулировать
и
преобразовывать
суждения:
утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия
в фактах, данных, наблюдениях и утверждениях, предлагать критерии для
выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и
индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений
(прямые и от противного), выстраивать аргументацию, приводить примеры и
контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько
вариантов решения, выбирать наиболее подходящий с учётом
самостоятельно выделенных критериев).
Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания,
формулировать
вопросы,
фиксирующие
противоречие,
проблему,
устанавливать искомое и данное, формировать гипотезу, аргументировать
свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование
по установлению особенностей математического объекта, явления, процесса,
выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность
полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать
предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на
вопрос и для решения задачи;
выбирать информацию из источников различных типов, анализировать,
систематизировать и интерпретировать информацию различных видов и
форм представления;
структурировать информацию, представлять её в различных формах,
иллюстрировать графически;
оценивать
надёжность
информации
по
самостоятельно
сформулированным критериям.
Коммуникативные универсальные учебные действия
Общение:
воспринимать и формулировать суждения в соответствии с условиями и
целями общения, ясно, точно, грамотно выражать свою точку зрения в
устных и письменных текстах, давать пояснения по ходу решения задачи,
комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы,
проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск
решения, сопоставлять свои суждения с суждениями других участников
диалога, обнаруживать различие и сходство позиций, в корректной форме
формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования,
проекта, самостоятельно выбирать формат выступления с учётом задач
презентации и особенностей аудитории.
Регулятивные универсальные учебные действия
Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с
учётом имеющихся ресурсов и собственных возможностей, аргументировать
и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть навыками познавательной рефлексии как осознания
совершаемых действий и мыслительных процессов, их результатов, владеть
способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, данных,
найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины
достижения или недостижения результатов деятельности, находить ошибку,
давать оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной
работы при решении учебных задач, принимать цель совместной
деятельности, планировать организацию совместной работы, распределять
виды работ, договариваться, обсуждать процесс и результат работы,
обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений,
«мозговые штурмы» и иные), выполнять свою часть работы и
координировать свои действия с другими членами команды, оценивать
качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу 10 класса обучающийся научится:
свободно оперировать понятиями: граф, плоский граф, связный граф,
путь в графе, цепь, цикл, дерево, степень вершины, дерево случайного
эксперимента;
свободно оперировать понятиями: случайный эксперимент (опыт),
случайное событие, элементарное случайное событие (элементарный исход)
случайного опыта, находить вероятности событий в опытах с
равновозможными элементарными событиями;
находить и формулировать события: пересечение, объединение данных
событий, событие, противоположное данному, использовать диаграммы
Эйлера, координатную прямую для решения задач, пользоваться формулой
сложения вероятностей для вероятностей двух и трех случайных событий;

оперировать
понятиями:
условная
вероятность,
умножение
вероятностей, независимые события, дерево случайного эксперимента,
находить вероятности событий с помощью правила умножения, дерева
случайного опыта, использовать формулу полной вероятности, формулу
Байеса при решении задач, определять независимость событий по формуле и
по организации случайного эксперимента;
применять изученные комбинаторные формулы для перечисления
элементов множеств, элементарных событий случайного опыта, решения
задач по теории вероятностей;
свободно оперировать понятиями: бинарный случайный опыт
(испытание), успех и неудача, независимые испытания, серия испытаний,
находить вероятности событий: в серии испытаний до первого успеха, в
серии испытаний Бернулли, в опыте, связанном со случайным выбором из
конечной совокупности;
свободно оперировать понятиями: случайная величина, распределение
вероятностей, диаграмма распределения, бинарная случайная величина,
геометрическое, биномиальное распределение.
К концу 11 класса обучающийся научится:
оперировать понятиями: совместное распределение двух случайных
величин, использовать таблицу совместного распределения двух случайных
величин для выделения распределения каждой величины, определения
независимости случайных величин;
свободно оперировать понятием математического ожидания случайной
величины (распределения), применять свойства математического ожидания
при решении задач, вычислять математическое ожидание биномиального и
геометрического распределений;
свободно оперировать понятиями: дисперсия, стандартное отклонение
случайной величины, применять свойства дисперсии случайной величины
(распределения) при решении задач, вычислять дисперсию и стандартное
отклонение геометрического и биномиального распределений;
вычислять выборочные характеристики по данной выборке и оценивать
характеристики генеральной совокупности данных по выборочным
характеристикам. Оценивать вероятности событий и проверять простейшие
статистические гипотезы, пользуясь изученными распределениями.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
Количество часов
№
п/п

Наименование разделов и тем
программы

Всего

Контрольные
работы

1

Множество действительных чисел.
Многочлены. Рациональные уравнения и
неравенства. Системы линейных
уравнений

24

1

2

Функции и графики. Степенная функция с
целым показателем

12

1

3

Арифметический корень n-ой степени.
Иррациональные уравнения

15

1

4

Показательная функция. Показательные
уравнения

10

1

5

Логарифмическая функция.
Логарифмические уравнения

18

1

6

Тригонометрические выражения и
уравнения

22

1

7

Последовательности и прогрессии

10

1

8

Непрерывные функции. Производная

20

1

9

Повторение, обобщение, систематизация
знаний

5

2

10

Введение в стереометрию

23

1

11

Взаимное расположение прямых в

6

1

Практические
работы

Электронные
(цифровые)
образовательные
ресурсы

пространстве
12

Параллельность прямых и плоскостей в
пространстве

8

13

Перпендикулярность прямых и
плоскостей в пространстве

25

14

Углы и расстояния

16

1

15

Многогранники

7

1

16

Векторы в пространстве

12

17

Повторение, обобщение и систематизация
знаний

5

18

Элементы теории графов

3

19

Случайные опыты, случайные события и
вероятности событий

3

20

Операции над множествами и событиями.
Сложение и умножение вероятностей.
Условная вероятность. Независимые
события

5

21

Элементы комбинаторики

4

22

Серии последовательных испытаний.
Испытания Бернулли. Случайный выбор
из конечной совокупности

5

23

Случайные величины и распределения

14

1

272

18

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

2

1

0

11 КЛАСС
Количество часов
№
п/п

Наименование разделов и тем
программы

Всего

Контрольные
работы

1

Исследование функций с помощью
производной

22

1

2

Первообразная и интеграл

12

1

3

Графики тригонометрических функций.
Тригонометрические неравенства

14

1

4

Иррациональные, показательные и
логарифмические неравенства

24

1

5

Комплексные числа

10

1

6

Натуральные и целые числа

10

1

7

Системы рациональных, иррациональных
показательных и логарифмических
уравнений

12

1

8

Задачи с параметрами

16

1

9

Повторение, обобщение, систематизация
знаний

16

2

10

Аналитическая геометрия

15

1

11

Повторение, обобщение и систематизация
знаний

15

1

12

Объём многогранника

17

1

13

Тела вращения

24

1

14

Площади поверхности и объёмы круглых

9

1

Практические
работы

Электронные
(цифровые)
образовательные
ресурсы

тел
15

Движения

5

1

16

Повторение, обобщение и систематизация
знаний

17

2

17

Закон больших чисел

5

18

Элементы математической статистики

6

19

Непрерывные случайные величины
(распределения), показательное и
нормальное распределения

4

20

Распределение Пуассона

2

21

Связь между случайными величинами

6

22

Обобщение и систематизация знаний

11

1

272

19

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

0

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
Количество часов
№
п/п

Тема урока

Всего

Контрольные
работы

Практические
работы

Дата
изучения

1

Множество, операции над множествами и
их свойства

1

02.09

2

Диаграммы Эйлера-Венна

1

03.09

3

Применение теоретико-множественного
аппарата для решения задач

1

04.09

4

Рациональные числа. Обыкновенные и
десятичные дроби, проценты,
бесконечные периодические дроби

1

04.09

5

Основные правила изображения на
рисунке плоскости, параллельных прямых
(отрезков), середины отрезка

1

05.09

6

Понятия стереометрии: точка, прямая,
плоскость, пространство. Основные
правила изображения на рисунке
плоскости, параллельных прямых
(отрезков), середины отрезка

1

05.09

7

Понятия: пересекающиеся плоскости,
пересекающиеся прямая и плоскость;
полупространство

1

06.09

8

Граф, связный граф, представление задачи
с помощью графа

1

06.09

Электронные
цифровые
образовательные
ресурсы

9

Рациональные числа. Обыкновенные и
десятичные дроби, проценты,
бесконечные периодические дроби

1

09.09

10

Применение дробей и процентов для
решения прикладных задач

1

10.09

11

Применение дробей и процентов для
решения прикладных задач

1

11.09

12

Действительные числа. Рациональные и
иррациональные числа

1

11.09

13

Понятия: пересекающиеся плоскости,
пересекающиеся прямая и плоскость;
полупространство

1

12.09

14

Многогранники, изображение
простейших пространственных фигур,
несуществующих объектов

1

12.09

15

Многогранники, изображение
простейших пространственных фигур,
несуществующих объектов

1

13.09

16

Степень (валентность) вершины. Путь в
графе. Цепи и циклы

1

13.09

17

Арифметические операции с
действительными числами

1

16.09

18

Модуль действительного числа и его
свойства

1

17.09

19

Приближённые вычисления, правила
округления, прикидка и оценка результата
вычислений

1

18.09

20

Основные методы решения целых и
дробно-рациональных уравнений и
неравенств

1

18.09

21

Аксиомы стереометрии и первые
следствия из них

1

19.09

22

Аксиомы стереометрии и первые
следствия из них

1

19.09

23

Аксиомы стереометрии и первые
следствия из них. Способы задания
прямых и плоскостей в пространстве.
Обозначения прямых и плоскостей

1

20.09

24

Графы на плоскости. Дерево случайного
эксперимента

1

20.09

25

Основные методы решения целых и
дробно-рациональных уравнений и
неравенств

1

23.09

26

Основные методы решения целых и
дробно-рациональных уравнений и
неравенств

1

24.09

27

Многочлены от одной переменной.
Деление многочлена на многочлен с
остатком. Теорема Безу

1

25.09

28

Многочлены с целыми коэффициентами.
Теорема Виета

1

25.09

29

Изображение сечений пирамиды, куба и
призмы, которые проходят через их рёбра.
Изображение пересечения полученных
плоскостей. Раскрашивание построенных

1

26.09

сечений разными цветами

30

Изображение сечений пирамиды, куба и
призмы, которые проходят через их рёбра.
Изображение пересечения полученных
плоскостей. Раскрашивание построенных
сечений разными цветами

1

26.09

31

Изображение сечений пирамиды, куба и
призмы, которые проходят через их рёбра.
Изображение пересечения полученных
плоскостей. Раскрашивание построенных
сечений разными цветами

1

27.09

32

Случайные эксперименты (опыты) и
случайные события. Элементарные
события (исходы)

1

27.09

33

Решение систем линейных уравнений

1

30.09

34

Решение систем линейных уравнений

1

01.10

35

Матрица системы линейных уравнений.
Определитель матрицы 2×2, его
геометрический смысл и свойства;
вычисление его значения

1

02.10

36

Определитель матрицы 2×2, его
геометрический смысл и свойства;
вычисление его значения

1

02.10

37

Изображение сечений пирамиды, куба и
призмы, которые проходят через их рёбра.
Изображение пересечения полученных
плоскостей. Раскрашивание построенных
сечений разными цветами

1

03.10

38

Метод следов для построения сечений

1

03.10

39

Метод следов для построения сечений.
Свойства пересечений прямых и
плоскостей

1

04.10

40

Вероятность случайного события.
Вероятности событий в опытах с
равновозможными элементарными
событиями

1

04.10

41

Применение определителя для решения
системы линейных уравнений

1

07.10

42

Решение прикладных задач с помощью
системы линейных уравнений

1

08.10

43

Решение прикладных задач с помощью
системы линейных уравнений

1

09.10

44

Контрольная работа: "Рациональные
уравнения и неравенства. Системы
линейных уравнений"

1

45

Метод следов для построения сечений.
Свойства пересечений прямых и
плоскостей

1

10.10

46

Построение сечений в пирамиде, кубе по
трём точкам на рёбрах. Создание
выносных чертежей и запись шагов
построения

1

10.10

47

Построение сечений в пирамиде, кубе по
трём точкам на рёбрах. Создание
выносных чертежей и запись шагов
построения

1

11.10

1

09.10

48

Вероятность случайного события.
Вероятности событий в опытах с
равновозможными элементарными
событиями

1

11.10

49

Функция, способы задания функции.
Взаимно обратные функции. Композиция
функций

1

14.10

50

График функции. Элементарные
преобразования графиков функций

1

15.10

51

Область определения и множество
значений функции. Нули функции.
Промежутки знак постоянства

1

16.10

52

Чётные и нечётные функции.
Периодические функции. Промежутки
монотонности функции

1

16.10

53

Построение сечений в пирамиде, кубе по
трём точкам на рёбрах. Создание
выносных чертежей и запись шагов
построения

1

17.10

54

Построение сечений в пирамиде, кубе по
трём точкам на рёбрах. Создание
выносных чертежей и запись шагов
построения

1

17.10

55

Повторение планиметрии: Теорема о
пропорциональных отрезках. Подобие
треугольников

1

18.10

56

Пересечение, объединение множеств и
событий, противоположные события.

1

18.10

Формула сложения вероятностей
57

Максимумы и минимумы функции.
Наибольшее и наименьшее значение
функции на промежутке

1

21.10

58

Линейная, квадратичная и
дробно-линейная функции

1

22.10

59

Элементарное исследование и построение
графиков этих функций

1

23.10

60

Элементарное исследование и построение
графиков этих функций

1

23.10

61

Повторение планиметрии: Теорема
Менелая. Расчеты в сечениях на
выносных чертежах. История развития
планиметрии и стереометрии

1

24.10

62

Контрольная работа "Аксиомы
стереометрии. Сечения"

1

63

Взаимное расположение прямых в
пространстве. Скрещивающиеся прямые.
Признаки скрещивающихся прямых.
Параллельные прямые в пространстве

1

25.10

64

Условная вероятность. Умножение
вероятностей. Формула условной
вероятности

1

25.10

65

Степень с целым показателем. Бином
Ньютона

1

05.11

66

Степень с целым показателем. Бином
Ньютона

1

06.11

1

24.10

67

Степенная функция с натуральным и
целым показателем. Её свойства и график

1

68

Арифметический корень натуральной
степени и его свойства

1

69

Теорема о существовании и
единственности прямой параллельной
данной прямой, проходящей через точку
пространства и не лежащей на данной
прямой. Лемма о пересечении
параллельных прямых плоскостью

1

07.11

70

Параллельность трех прямых. Теорема о
трёх параллельных прямых. Теорема о
скрещивающихся прямых

1

08.11

71

Параллельное проектирование. Основные
свойства параллельного проектирования.
Изображение разных фигур в
параллельной проекции

1

08.11

72

Условная вероятность. Умножение
вероятностей. Формула условной
вероятности

1

11.11

73

Контрольная работа: "Степенная функция.
Её свойства и график"

1

12.11

74

Арифметический корень натуральной
степени и его свойства

1

13.11

75

Преобразования числовых выражений,
содержащих степени и корни

1

13.11

76

Преобразования числовых выражений,
содержащих степени и корни

1

14.11

06.11
1

07.11

77

Центральная проекция. Угол с
сонаправленными сторонами. Угол между
прямыми

1

14.11

78

Задачи на доказательство и исследование,
связанные с расположением прямых в
пространстве

1

15.11

79

Понятия: параллельность прямой и
плоскости в пространстве. Признак
параллельности прямой и плоскости.
Свойства параллельности прямой и
плоскости

1

15.11

80

Формула полной вероятности

1

18.11

81

Преобразования числовых выражений,
содержащих степени и корни

1

19.11

82

Иррациональные уравнения. Основные
методы решения иррациональных
уравнений

1

20.11

83

Иррациональные уравнения. Основные
методы решения иррациональных
уравнений

1

20.11

84

Иррациональные уравнения. Основные
методы решения иррациональных
уравнений

1

21.11

85

Геометрические задачи на вычисление и
доказательство, связанные с
параллельностью прямых и плоскостей в
пространстве

1

21.11

86

Построение сечения, проходящего через

1

22.11

данную прямую на чертеже и
параллельного другой прямой. Расчёт
отношений

87

Параллельная проекция, применение для
построения сечений куба и
параллелепипеда. Свойства
параллелепипеда и призмы

1

22.11

88

Формула Байеса. Независимые события

1

25.11

89

Равносильные переходы в решении
иррациональных уравнений

1

26.11

90

Равносильные переходы в решении
иррациональных уравнений

1

27.11

91

Равносильные переходы в решении
иррациональных уравнений

1

27.11

92

Равносильные переходы в решении
иррациональных уравнений

1

28.11

93

Параллельные плоскости. Признаки
параллельности двух плоскостей

1

28.11

94

Теорема о параллельности и
единственности плоскости, проходящей
через точку, не принадлежащую данной
плоскости и следствия из неё

1

29.11

95

Свойства параллельных плоскостей: о
параллельности прямых пересечения при
пересечении двух параллельных
плоскостей третьей

1

29.11

96

Комбинаторное правило умножения.
Перестановки и факториал

1

02.12

97

Свойства и график корня n-ой степени как
функции обратной степени с натуральным
показателем

1

03.12

98

Свойства и график корня n-ой степени как
функции обратной степени с натуральным
показателем

1

04.12

99

Контрольная работа: "Свойства и график
корня n-ой степени. Иррациональные
уравнения"

1

100

Степень с рациональным показателем и её
свойства

1

05.12

101

Свойства параллельных плоскостей: об
отрезках параллельных прямых,
заключённых между параллельными
плоскостями; о пересечении прямой с
двумя параллельными плоскостями

1

05.12

102

Повторение: теорема Пифагора на
плоскости

1

06.12

103

Повторение: тригонометрия
прямоугольного треугольника

1

06.12

104

Число сочетаний. Треугольник Паскаля

1

09.12

105

Степень с рациональным показателем и её
свойства

1

10.12

106

Степень с рациональным показателем и её
свойства

1

11.12

107

Показательная функция, её свойства и
график

1

11.12

1

04.12

108

Использование графика функции для
решения уравнений

1

12.12

109

Свойства куба и прямоугольного
параллелепипеда

1

12.12

110

Вычисление длин отрезков в кубе и
прямоугольном параллелепипеде

1

13.12

111

Перпендикулярность прямой и плоскости.
Признак перпендикулярности прямой и
плоскости

1

13.12

112

Формула бинома Ньютона

1

16.12

113

Использование графика функции для
решения уравнений

1

17.12

114

Показательные уравнения. Основные
методы решения показательных
уравнений

1

18.12

115

Показательные уравнения. Основные
методы решения показательных
уравнений

1

18.12

116

Показательные уравнения. Основные
методы решения показательных
уравнений

1

19.12

117

Перпендикулярность прямой и плоскости.
Признак перпендикулярности прямой и
плоскости

1

19.12

118

Теорема о существовании и
единственности прямой, проходящей
через точку пространства и
перпендикулярной к плоскости

1

20.12

119

Контрольная работа №1: "Графы,
вероятности, множества, комбинаторика"

1

20.12

120

Плоскости и перпендикулярные им
прямые в многогранниках

1

1

23.12

121

Контрольная работа: "Показательная
функция. Показательные уравнения"

1

1

24.12

122

Логарифм числа. Свойства логарифма

1

25.12

123

Логарифм числа. Свойства логарифма

1

25.12

124

Логарифм числа. Свойства логарифма

1

26.12

125

Плоскости и перпендикулярные им
прямые в многогранниках

1

26.12

126

Перпендикуляр и наклонная. Построение
перпендикуляра из точки на прямую

1

27.12

127

Перпендикуляр и наклонная. Построение
перпендикуляра из точки на прямую

1

27.12

128

Бинарный случайный опыт (испытание),
успех и неудача. Независимые испытания.
Серия независимых испытаний до первого
успеха

1

09.01

129

Десятичные и натуральные логарифмы

1

09.01

130

Десятичные и натуральные логарифмы

1

10.01

131

Преобразование выражений, содержащих
логарифмы

1

10.01

132

Теорема о трёх перпендикулярах (прямая
и обратная)

1

13.01

133

Контрольная работа по теме
«Логарифмы»

1

1

14.01

134

Теорема о трёх перпендикулярах (прямая
и обратная)

1

15.01

135

Угол между скрещивающимися прямыми

1

15.01

136

Серия независимых испытаний до первого
успеха

1

16.01

137

Преобразование выражений, содержащих
логарифмы

1

16.01

138

Логарифмическая функция, её свойства и
график

1

17.01

139

Логарифмическая функция, её свойства и
график

1

17.01

140

Использование графика функции для
решения уравнений

1

20.01

141

Поиск перпендикулярных прямых с
помощью перпендикулярных плоскостей

1

21.01

142

Ортогональное проектирование

1

22.01

143

Построение сечений куба, призмы,
правильной пирамиды с помощью
ортогональной проекции

1

22.01

144

Серия независимых испытаний Бернулли

1

23.01

145

Использование графика функции для
решения уравнений

1

23.01

146

Логарифмические уравнения. Основные
методы решения логарифмических
уравнений

1

24.01

147

Логарифмические уравнения. Основные
методы решения логарифмических

1

24.01

уравнений
148

Логарифмические уравнения. Основные
методы решения логарифмических
уравнений

1

27.01

149

Построение сечений куба, призмы,
правильной пирамиды с помощью
ортогональной проекции

1

28.01

150

Симметрия в пространстве относительно
плоскости. Плоскости симметрий в
многогранниках

1

29.01

151

Признак перпендикулярности прямой и
плоскости как следствие симметрии

1

29.01

152

Случайный выбор из конечной
совокупности

1

30.01

153

Равносильные переходы в решении
логарифмических уравнений

1

30.01

154

Равносильные переходы в решении
логарифмических уравнений

1

31.01

155

Синус, косинус, тангенс и котангенс
числового аргумента

1

31.01

156

Правильные многогранники. Расчёт
расстояний от точки до плоскости

1

03.02

157

Правильные многогранники. Расчёт
расстояний от точки до плоскости

1

04.02

158

Контрольная работа: "Логарифмическая
функция. Логарифмические уравнения"

1

159

Способы опустить перпендикуляры:

1

1

05.02
05.02

симметрия, сдвиг точки по параллельной
прямой
160

Контрольная работа "Взаимное
расположение прямых и плоскостей в
пространстве"

1

161

Синус, косинус, тангенс и котангенс
числового аргумента

1

06.02

162

Арксинус, арккосинус и арктангенс
числового аргумента

1

07.02

163

Арксинус, арккосинус и арктангенс
числового аргумента

1

07.02

164

Тригонометрическая окружность,
определение тригонометрических
функций числового аргумента

1

10.02

165

Сдвиг по непараллельной прямой,
изменение расстояний

1

11.02

166

Практическая работа с использованием
электронных таблиц

1

167

Повторение: угол между прямыми на
плоскости, тригонометрия в
произвольном треугольнике, теорема
косинусов

1

12.02

168

Случайная величина. Распределение
вероятностей. Диаграмма распределения

1

13.02

169

Тригонометрическая окружность,
определение тригонометрических
функций числового аргумента

1

13.02

1

1

06.02

12.02

170

Основные тригонометрические формулы

1

14.02

171

Основные тригонометрические формулы

1

14.02

172

Основные тригонометрические формулы

1

17.02

173

Повторение: угол между
скрещивающимися прямыми в
пространстве

1

18.02

174

Геометрические методы вычисления угла
между прямыми в многогранниках

1

19.02

175

Двугранный угол. Свойство линейных
углов двугранного угла

1

19.02

176

Операции над случайными величинами.
Примеры распределений. Бинарная
случайная величина

1

20.02

177

Основные тригонометрические формулы

1

20.02

178

Преобразование тригонометрических
выражений

1

21.02

179

Преобразование тригонометрических
выражений

1

21.02

180

Преобразование тригонометрических
выражений

1

24.02

181

Перпендикулярные плоскости. Свойства
взаимно перпендикулярных плоскостей

1

25.02

182

Признак перпендикулярности плоскостей;
теорема о прямой пересечения двух
плоскостей перпендикулярных третьей
плоскости

1

26.02

183

Прямоугольный параллелепипед; куб;

1

26.02

измерения, свойства прямоугольного
параллелепипеда
184

Геометрическое распределение.
Биномиальное распределение

1

27.02

185

Преобразование тригонометрических
выражений

1

27.02

186

Решение тригонометрических уравнений

1

28.02

187

Решение тригонометрических уравнений

1

28.02

188

Решение тригонометрических уравнений

1

03.03

189

Теорема о диагонали прямоугольного
параллелепипеда и следствие из неё

1

04.03

190

Стереометрические и прикладные задачи,
связанные со взаимным расположением
прямых и плоскости

1

05.03

191

Повторение: скрещивающиеся прямые,
параллельные плоскости в стандартных
многогранниках

1

05.03

192

Математическое ожидание случайной
величины. Совместное распределение
двух случайных величин

1

06.03

193

Решение тригонометрических уравнений

1

06.03

194

Решение тригонометрических уравнений

1

07.03

195

Решение тригонометрических уравнений

1

07.03

196

Решение тригонометрических уравнений

1

10.03

197

Пара параллельных плоскостей на
скрещивающихся прямых, расстояние
между скрещивающимися прямыми в

1

11.03

простых ситуациях
198

Расстояние от точки до плоскости,
расстояние от прямой до плоскости

1

12.03

199

Вычисление расстояний между
скрещивающимися прямыми с помощью
перпендикулярной плоскости

1

12.03

200

Независимые случайные величины.
Свойства математического ожидания.
Математическое ожидание бинарной
случайной величины

1

13.03

201

Контрольная работа "Углы и расстояния"

1

202

Последовательности, способы задания
последовательностей. Метод
математической индукции

1

14.03

203

Монотонные и ограниченные
последовательности. История анализа
бесконечно малых

1

14.03

204

Арифметическая прогрессия

1

15.03

205

Трёхгранный угол, неравенства для
трехгранных углов. Теорема Пифагора,
теоремы косинусов и синусов для
трёхгранного угла

1

15.03

206

Элементы сферической геометрии:
геодезические линии на Земле

1

17.03

207

Контрольная работа:
"Тригонометрические выражения и
тригонометрические уравнения"

1

1

1

13.03

18.03

208

Математическое ожидание
геометрического и биномиального
распределений

1

19.03

209

Геометрическая прогрессия

1

19.03

210

Бесконечно убывающая геометрическая
прогрессия

1

20.03

211

Сумма бесконечно убывающей
геометрической прогрессии

1

20.03

212

Линейный и экспоненциальный рост.
Число е. Формула сложных процентов

1

21.03

213

Систематизация знаний "Многогранник и
его элементы"

1

21.03

214

Пирамида. Виды пирамид. Правильная
пирамида

1

31.03

215

Призма. Прямая и наклонная призмы.
Правильная призма

1

01.04

216

Дисперсия и стандартное отклонение

1

02.04

217

Линейный и экспоненциальный рост.
Число е. Формула сложных процентов

1

02.04

218

Использование прогрессии для решения
реальных задач прикладного характера

1

03.04

219

Непрерывные функции и их свойства

1

03.04

220

Точка разрыва. Асимптоты графиков
функций

1

04.04

221

Прямой параллелепипед, прямоугольный
параллелепипед, куб

1

04.04

222

Выпуклые многогранники. Теорема

1

05.04

Эйлера
223

Выпуклые многогранники. Теорема
Эйлера. Правильные и полуправильные
многогранники

1

05.04

224

Дисперсия бинарной случайной
величины. Свойства дисперсии

1

07.04

225

Свойства функций непрерывных на
отрезке

1

08.04

226

Контрольная работа:
"Последовательности и прогрессии"

1

227

Свойства функций непрерывных на
отрезке

1

09.04

228

Метод интервалов для решения
неравенств

1

10.04

229

Понятие вектора на плоскости и в
пространстве

1

230

Сумма векторов

1

11.04

231

Разность векторов

1

11.04

232

Математическое ожидание произведения
и дисперсия суммы независимых
случайных величин

1

14.04

233

Метод интервалов для решения
неравенств

1

15.04

234

Метод интервалов для решения
неравенств

1

16.04

235

Применение свойств непрерывных
функций для решения задач

1

16.04

1

1

09.04

10.04

236

Применение свойств непрерывных
функций для решения задач

1

17.04

237

Правило параллелепипеда

1

17.04

238

Умножение вектора на число

1

18.04

239

Разложение вектора по базису трёх
векторов, не лежащих в одной плоскости

1

18.04

240

Практическая работа с использованием
электронных таблиц

1

21.04

241

Первая и вторая производные функции

1

22.04

242

Определение, геометрический смысл
производной

1

23.04

243

Определение, физический смысл
производной

1

23.04

244

Уравнение касательной к графику
функции

1

24.04

245

Контрольная работа "Многогранники"

1

24.04

246

Скалярное произведение

1

25.04

247

Вычисление угла между векторами в
пространстве

1

25.04

248

Дисперсия биномиального распределения.
Практическая работа с использованием
электронных таблиц

1

26.04

249

Уравнение касательной к графику
функции

1

28.04

250

Производные элементарных функций

1

30.04

251

Производные элементарных функций

1

30.04

252

Производная суммы, произведения,
частного и композиции функций

1

05.05

253

Простейшие задачи с векторами

1

06.05

254

Простейшие задачи с векторами

1

07.05

255

Простейшие задачи с векторами

1

07.05

256

Обобщение и систематизация знаний

1

12.05

257

Производная суммы, произведения,
частного и композиции функций

1

13.05

258

Производная суммы, произведения,
частного и композиции функций

1

14.05

259

Контрольная работа: "Производная"

1

260

Повторение, обобщение, систематизация
знаний: "Уравнения"

1

15.05

261

Простейшие задачи с векторами

1

15.05

262

Обобщение и систематизация знаний

1

16.05

263

Контрольная работа №2: "Испытания
Бернулли. Случайные величины и
распределения"

1

16.05

264

Обобщение и систематизация знаний

1

265

Повторение, обобщение, систематизация
знаний: "Функции"

1

266

Итоговая контрольная работа

1

1

21.05

267

Итоговая контрольная работа

1

1

21.05

268

Повторение, обобщение, систематизация
знаний

1

269

Итоговая контрольная работа

1

1

1

14.05

19.05
20.05

22.05
1

22.05

270

Итоговая контрольная работа

1

271

Обобщение и систематизация знаний

1

23.05

272

Обобщение и систематизация знаний

1

26.05

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО
ПРОГРАММЕ

272

1

18

23.05

0


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».